
Snow: Protocol-Faithful Privacy via Pairwise Device
Sync and Pluggable MPC Proving

Nadeem Bhati
nadeemb53@gmail.com

Abstract—Privacy has moved from optional to ex-
pected. Phones and browsers now ship with encryption
by default, and users increasingly demand direct control
over their data. In crypto, privacy can be enforced
with mathematics rather than policy, yet privacy-
focused networks introduce new forms of UX friction:
heterogeneous calldata and transaction semantics, client-
side proving requirements that strain commodity de-
vices, and brittle multi-device secret handling. Snow
addresses these hurdles at the wallet layer by acting as
a policy and verification engine that normalizes per-
protocol differences, syncs only the minimum state
across a user’s devices through a locally formed, end-
to-end encrypted channel, and routes proving to the
most suitable backend—local, Snow-operated REP3, or
third-party MPC/coSNARK—while always verifying
on-device before submission and syncing the private
state required for multi-device correctness. Backends
remain interchangeable because policy, verification, and
device trust are anchored on the client. Snow is chain-
agnostic and non-custodial from first principles, and it
is designed to let both privacy-native and conventional
chains deliver private actions without imposing a UX
tax. Benchmarks are reported only when reproduced
from public code.

Index Terms—Privacy, Wallets, Zero-Knowledge
Proofs, Multi-Party Computation, Pairwise Sync, Au-
thorization

I. Introduction
Mainstream products now provide encryption by default,

but in crypto the core guarantees come from proofs and
verification rather than policy agreements. Modern privacy-
first networks rely on zero-knowledge proofs (ZKPs) and
private state, yet they introduce practical friction in three
places: they expose distinct proof stacks and transaction
semantics that fragment the wallet UX; they often expect
client-side proving on phones or browsers that are ill-suited
for sustained workloads; and they make multi-device use
brittle by pushing risky secret handling onto users. People
want private actions, but setup overhead and performance
ceilings stall adoption. Custodial shortcuts reduce friction
at the expense of trust.

Snow resolves these issues within the wallet itself by com-
bining deterministic backend selection, local verification
of any outsourced result, and short-authentication-string
(SAS) verified device sync. The result is a familiar UX that
keeps the protocol’s privacy guarantees intact.

II. Problem Statement
We focus on four concrete pain points:

• P1 — Fragmented UX across proof systems.
Protocols use different proof systems, calldata shapes,
and key hierarchies, so a single wallet flow breaks unless
it adapts at the boundary.

• P2 — Device-heavy proving and setup. Many
networks implicitly assume client-side proving; phones
and browsers struggle, and installing binaries or GPU
toolchains adds avoidable friction.

• P3 — Brittle private state management. In privacy
protocols a user’s balance is a client-maintained set
of unspent notes/commitments plus viewing keys and
Merkle witnesses, not a single on-chain counter. Without
a safe sync channel, moving this state between devices
is error-prone and incentivizes custodial shortcuts.

• P4 — Central relays/custody weaken guarantees.
Centralized relays or custodial syncing smooth UX while
undermining the very privacy assumptions the protocols
are meant to preserve.

III. Design Principles

• D1 — Protocol-faithful privacy. Match, and where
possible strengthen, each protocol’s intended privacy and
trust assumptions instead of replacing them with wallet-
level policy.

• D2 — Non-custodial by default. Users retain control
of secrets; no centralized custody is introduced to simplify
multi-device use.

• D3 — Local verification of remote results. Any out-
sourced proof is verified on the client before submission
so correctness does not depend on provider honesty.

• D4 — Simplicity at the edge. Users see one clear
flow while adapters encapsulate complexity and protocol-
specific details.

• D5 — Decentralized support paths. Prefer pairwise
encrypted device channels and distributed proving over
centralized relay servers.

IV. System Overview

Snow is a wallet-layer policy engine that exposes three
interchangeable proving backends—local, Snow-REP3, and
third-party MPC/coSNARK—while adapters normalize
calldata, witness schemas, proof formats, and authorization
rules across protocols. Backend selection is deterministic
per circuit and service-level objective so the same action
consistently follows the same route.

Fig. 1. Architecture: client-side policy and verification, pairwise device
channel, and pluggable proving backends.

Fig. 2. Backend selection is deterministic and SLA-driven, while
verification remains a local invariant.

The Snow Extension manages accounts, adapters, prov-
ing policy, MPC jobs, and device pairing. A pairwise device
channel provides end-to-end encryption formed locally;
security derives from a Noise-XX AKE with SAS binding,
independent of the transport. An MPC proving network
composed of independent operators computes proofs on
secret shares so no single operator learns private inputs.
Protocol adapters remain minimal: they encode per-chain
calldata, witness schemas, proof formats, and authorization
rules, and they operate under client-owned verification.

V. Proving Policy
For a circuit class C and an SLA S, Snow attempts

backends in the order Local → REP3 → Third-Party. The
choice is a pure function of (C, S, policy_version) so results
are predictable across devices. Vouchers and quotas govern
metering rather than trust, and correctness is invariant
because the wallet verifies any proof locally before it is
submitted on-chain.

VI. Pairwise Device-to-Device Secret Transfer
Snow provides secure, non-custodial synchronization of

the minimum necessary secrets—such as viewing keys and
derived addresses—between a user’s authenticated devices
using a short-lived, end-to-end encrypted channel formed
over a local, untrusted transport. The channel is created
locally, the transport may be BLE, Wi-Fi Direct, or public
Wi-Fi, and security comes from a Noise XX AKE with
a SAS check, transcript binding, and AEAD chunking
with counters and explicit revocation. Only derivation and
viewing keys, device policy, and adapter metadata are
synchronized; root keys move only if the user deliberately
executes the same channel flow.

A. Channel Formation
The initiating device displays a QR code or short code

that encodes an AKE offer. Snow performs a Noise XX
handshake [4] (optionally X3DH [5] where asynchronous
initiation is required). The second device scans or enters
the code, both sides mutually authenticate, and session
keys are derived. No remote relay or mesh is needed for
security.

B. Out-of-Band Verification
After pairing, both devices present a short authentication

string. The user confirms a match, which prevents relayed or
photographed QR attacks. A mismatch aborts the channel
and nothing is synchronized.

C. Revocation and Recovery
A user can revoke a lost device from any paired device.

Revocation rotates channel keys and tombstones the
revoked peer so future traffic remains protected by forward
secrecy. Historical ciphertext is accessible only if it was
already present at the time of compromise, matching the
expectations of ratcheted secure messaging [6]. Recovery
remains non-custodial and can involve guardians or printed
kits if the user opts in.

D. Mobile/Transport Considerations
On iOS, Bluetooth Low Energy is the default discovery

and transport due to platform constraints, while on
Android and desktop Snow prefers Wi-Fi Direct for
throughput. A local-only WebRTC fallback is available
when neither BLE nor Wi-Fi Direct can be negotiated.

E. Provisioning Scope
Snow synchronizes only the minimum client-side state

required for protocol-faithful continuity, never custody:
• Viewing keys (kv): Permit each device to independently

scan encrypted chain state and discover owned notes.
• Owned unspent notes/commitments: The cipher-

text/commitment plus the secret fields (value, random-
ness, address data) necessary to construct a spend.

• Witness data (Merkle paths): Inclusion paths for
each unspent note to avoid costly full rescans; paths are
incrementally updated as new blocks land.

• Spent nullifiers (own set): Locally maintained set
of nullifiers already revealed by the user to prevent
accidental double-spend attempts across devices.

• Derivation state: Indices/cursors for stealth/address
derivation to prevent collisions and maintain a coherent
history.
Root spending keys are not synchronized by default.

Moving a root key requires the same SAS-verified channel
with explicit user action. Device policy and adapter
metadata are included to keep behavior identical across
devices.

Fig. 3. Pairing flow with SAS verification and transcript binding to
prevent relay and reflection attacks.

Fig. 4. REP3 pipeline: share the witness, compute over replicated
shares, assemble the proof, then verify locally on the client.

F. Example Flow
1) A private payment lands on the desktop. The wallet

records a new note, its Merkle path, updates derivation
cursors, and—if applicable—marks prior nullifiers as
spent.

2) Through the SAS-verified pairwise channel, the desktop
syncs only the new note, its witness, updated cursors,
and nullifier changes to the phone.

3) The phone immediately reflects the correct balance and
can construct a valid ZKP spend without rescanning
the chain or exporting seeds.

VII. MPC Backends (REP3 / Threshold /
coSNARK)

When on-device proving is impractical because of com-
putational cost or setup friction, Snow outsources proof
generation to a distributed committee using MPC while
keeping private inputs confidential under the chosen secu-
rity model.

A. REP3 Compatibility Surface
Snow supports replicated sharing over Fp with one-

corruption malicious security in a three-party committee.
Deterministic domain separators bind transcripts to public
inputs, and the client verifies (π, pub) locally so acceptance
does not depend on committee honesty.

B. Threshold/Shamir
For circuits or deployments that value availability and

jurisdictional spread over minimal committee size, Snow

can route to t-of-n protocols (e.g., SPDZ/VOLE families)
using Shamir shares. Claims in this paper refer to REP3
unless stated otherwise.

C. Third-Party MPC/coSNARK
Coordinator-based networks with vouchers or quotas are

supported as alternative providers. Vouchers are treated
as metering artifacts, and the wallet’s local verification
remains the acceptance gate.

D. Committee Formation and Backend Selection
Snow maintains a pool of staked operators O with

|O| ≥ 3. For REP3, exactly three operators are sampled per
job using a stake-capped VRF lottery with diversity caps to
avoid correlated failures. If any selected party cannot meet
the SLA for the circuit class, Snow resamples; repeated
failures trigger fallback to local proving.

E. Input Provisioning (REP3)
Let W = (w1, . . . , wm) ∈ Fm

p be the witness. The client
commits to each wi with Ci = Com(wi; ri) and creates
replicated shares using fresh randomness so any two parties
reconstruct wi while any single party learns nothing. Each
party receives its share over a Noise-established channel
with AEAD, along with the commitments and a per-job
transcript identifier. The committee performs consistency
checks bound to the commitments before computation. No
Shamir polynomials are used in REP3.

F. Computation (REP3)
The parties evaluate the prover arithmetic on replicated

shares. Linear operations are local, while multiplications
consume preprocessed triples generated during setup.
Malicious security against a single corrupted party follows
from authenticated transcript checks. The output is a
standard proof π with public inputs pub; no party learns
W .

G. Verification
The wallet verifies π against pub using the protocol’s

verification key. A valid proof yields payment to the
committee, while invalid or late outputs do not and also
affect reputation. This step is identical across backends.

VIII. Security Model
Snow uses distinct models for pairwise sync and MPC

proving.
Pairwise Sync: The adversary controls the local

network (Dolev–Yao), while Noise XX with SAS, transcript
binding, and AEAD counters protect confidentiality and
integrity; security reduces to SAS entropy and device
integrity.

MPC Proving: In REP3 the system tolerates one
corrupted party in a three-party committee; an adversarial
majority can harm liveness but not correctness because
the wallet verifies proofs locally.

A. Threat Model: Pairwise Device Sync
We assume the adversary controls the local transport

(BLE/Wi-Fi/WebRTC) and can relay offers; SAS com-
parison binds the AKE transcript to the human check,
preventing QR/photo relay. Syncing notes/witnesses does
not weaken spend correctness because proof verification
and nullifier checks occur locally.

B. Threat Model: MPC Proving (REP3)
The adversary may control at most one operator in the

three-party committee and can deviate arbitrarily. Goals
are (1) input privacy, where any single party’s view is
statistically independent of W , and (2) proof integrity,
where either a valid π is produced and verified or no output
is accepted. Assumptions include the hardness underpin-
ning the MPC and ZKP schemes, at least two honest
parties, correct input provisioning, and local verification.
An adversarial majority can at most delay or deny service.

C. Security Analysis
Device Compromise. Hardware-backed key storage,

optional spending limits, and rapid revocation bound the
blast radius. Compromising one device does not reveal
secrets that were never synchronized to it.

Proof Integrity. Because the wallet verifies π locally,
correctness is independent of committee behavior; dishonest
operators affect liveness, not acceptance.

IX. Governance and Economics
Snow operates an open provider registry with bonds and

client-side sampling. A stake-capped VRF with jurisdic-
tional and infrastructure diversity caps selects committees,
and bonds are slashable for equivocation, SLA violations, or
invalid transcripts. Both coordinatorless and coordinator-
based modes are supported; vouchers, where present, are
treated strictly as quota tokens. For cold start, Snow
may bootstrap with an audited allowlist of operators and
decentralize over time.

A. Sampling
Given the operator set O, Snow samples a REP3

committee {P0, P1, P2} ⊂ O per job using VRF proofs
and diversity caps. Selection metadata is included in a
client-signed job envelope. The client establishes Noise XX
channels and provisions replicated shares. If a selected
party fails to meet the SLA (e.g., p95 latency bound for
circuit class C), Snow resamples; repeated failures trigger
local fallback.

B. Fees, Reputation, Slashing
Jobs are priced via a posted-price menu with sealed-

bid support that converges toward a base-fee market as
utilization stabilizes. Operators are paid per valid proof,
latency percentiles feed reputation, and bonds are slashable
for equivocation, failure to co-sign within SLA, or invalid
transcripts.

TABLE I
End-to-end metrics (PoC harness)

Metric Result

MPC proving latency (E2E) 5.7 s
Local verification (client) 154 ms
Proof system UltraHonk
Proof size 456 field elements (≈ 14,592 bytes)
Security model Malicious-secure REP3 (1-of-3)

X. Benchmarking Methodology
End-to-end wall-clock measurements cover encode/share,

network transit, MPC computation, proof assembly, and
client verification. Comparisons across backends use identi-
cal circuits and a dockerized harness with fixed seeds and
AEAD transport. Scripts are published so the setup can
be reproduced.

XI. Benchmark Setup
Codebase: https://github.com/getsnowxyz/aztec-mpc-

poc
Circuit: Aztec nullifier (UltraHonk)
MPC Protocol: REP3 (3-party, malicious-secure)
Scope: PoC harness; we do not state host hardware or

RTT claims here.

XII. Performance Results
A. Aztec Nullifier (UltraHonk, REP3, 3-Party)
B. Integration Validation

Protocol adapters satisfy chain-specific requirements
while maintaining a unified UX, and the stated protocol
fidelity and performance targets hold for the scoped circuits
and backend.

XIII. Related Work and Positioning
Single-stack wallets do not generalize across proof

systems, and while MPC/coSNARK networks commoditize
off-device proving, they do not by themselves standardize
policy, device trust, or provider selection. Snow anchors
these concerns on the client and routes to local, Snow-
REP3, or third-party backends through chain-agnostic
adapters. Custodial sync services improve convenience at
the cost of non-custodial guarantees; Snow achieves the
same convenience with SAS-verified pairwise sync and
client-side verification. Recent progress in collaborative
proving validates outsourcing as a viable path; Snow
supplies the wallet abstraction that preserves protocol
intent.

XIV. Conclusion
Snow removes practical friction without diluting protocol

guarantees by abstracting per-protocol differences, syn-
chronizing only the minimum state through locally formed
pairwise channels, and outsourcing proving when local
paths are impractical while always verifying proofs on-
device. The approach scales across privacy networks and
remains non-custodial by construction.

https://github.com/getsnowxyz/aztec-mpc-poc
https://github.com/getsnowxyz/aztec-mpc-poc

References
[1] A. Shamir, “How to Share a Secret,” Communications of the

ACM, 1979.
[2] I. Damgård et al., “Practical Covertly Secure MPC with

Dishonest Majority,” CRYPTO, 2012.
[3] T. Araki et al., “High-Throughput Secure Three-Party Compu-

tation for Malicious Adversaries and an Honest Majority,” ACM
CCS, 2016.

[4] T. Perrin, “The Noise Protocol Framework,” 2018.
[5] M. Marlinspike and T. Perrin, “The X3DH Key Agreement

Protocol,” Signal, 2016.
[6] M. Marlinspike and T. Perrin, “The Double Ratchet Algorithm,”

Signal, 2016.
[7] A. Gabizon, Z. J. Williamson, O. Ciobotaru, “PLONK,” 2019.
[8] P. Boyle et al., “Efficient Two-Round OT Extension and VOLE,”

2021.

	Introduction
	Problem Statement
	Design Principles
	System Overview
	Proving Policy
	Pairwise Device-to-Device Secret Transfer
	Channel Formation
	Out-of-Band Verification
	Revocation and Recovery
	Mobile/Transport Considerations
	Provisioning Scope
	Example Flow

	MPC Backends (REP3 / Threshold / coSNARK)
	REP3 Compatibility Surface
	Threshold/Shamir
	Third-Party MPC/coSNARK
	Committee Formation and Backend Selection
	Input Provisioning (REP3)
	Computation (REP3)
	Verification

	Security Model
	Threat Model: Pairwise Device Sync
	Threat Model: MPC Proving (REP3)
	Security Analysis

	Governance and Economics
	Sampling
	Fees, Reputation, Slashing

	Benchmarking Methodology
	Benchmark Setup
	Performance Results
	Aztec Nullifier (UltraHonk, REP3, 3-Party)
	Integration Validation

	Related Work and Positioning
	Conclusion
	References

